Análisis comparativo entre: «el análisis exploratorio de datos» y los modelos de «árboles de decisión» y «kmeans » en el diagnóstico de la malignidad en algunos exámenes de cáncer de mama. Un estudio de caso

Carmen Cecilia Sánchez Zuleta, Lillyana María Giraldo Marín, Carlos César Piedrahita Escobar, Isis Bonet, Christian Lochmüller, Marta Silvia Tabares Betancur, Alejandro Peña

Resultado de la investigación: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

Resumen

The exponential growth of medical data has generated the need to implement new techniques of information analysis that support decision making. The objective of this article is to identify the aggregated value that data mining models have in decision making in the information given by exploratory analysis. It was used a case study methodology for two data sets, that look to determine the malignity of detected masses, in the breasts of patients, through the interpretation of attributes registered from the mases. The results show a complementary behavior of both techniques.

Título traducido de la contribuciónEvaluation of models of decision trees and K-means models in the characterization or diagnosis of some diseases
IdiomaEspañol
PublicaciónEspacios
Volumen39
Número de edición28
EstadoPublicada - 1 jun 2018

Huella dactilar

Decision trees
Decision making
Information analysis
Data mining
Evaluation
K-means
Decision tree
Methodology

Palabras clave

  • Breast cancer
  • Decision Trees
  • K-means clustering
  • Mammographic

Citar esto

@article{ad5b52fb94f74e9eb639efb08ea7f08b,
title = "An{\'a}lisis comparativo entre: «el an{\'a}lisis exploratorio de datos» y los modelos de «{\'a}rboles de decisi{\'o}n» y «kmeans » en el diagn{\'o}stico de la malignidad en algunos ex{\'a}menes de c{\'a}ncer de mama. Un estudio de caso",
abstract = "The exponential growth of medical data has generated the need to implement new techniques of information analysis that support decision making. The objective of this article is to identify the aggregated value that data mining models have in decision making in the information given by exploratory analysis. It was used a case study methodology for two data sets, that look to determine the malignity of detected masses, in the breasts of patients, through the interpretation of attributes registered from the mases. The results show a complementary behavior of both techniques.",
keywords = "Breast cancer, Decision Trees, K-means clustering, Mammographic",
author = "{S{\'a}nchez Zuleta}, {Carmen Cecilia} and {Giraldo Mar{\'i}n}, {Lillyana Mar{\'i}a} and {Piedrahita Escobar}, {Carlos C{\'e}sar} and Isis Bonet and Christian Lochm{\"u}ller and {Tabares Betancur}, {Marta Silvia} and Alejandro Pe{\~n}a",
year = "2018",
month = "6",
day = "1",
language = "Espa{\~n}ol",
volume = "39",
journal = "Espacios",
issn = "0798-1015",
publisher = "Revista Espacios",
number = "28",

}

Análisis comparativo entre : «el análisis exploratorio de datos» y los modelos de «árboles de decisión» y «kmeans » en el diagnóstico de la malignidad en algunos exámenes de cáncer de mama. Un estudio de caso. / Sánchez Zuleta, Carmen Cecilia; Giraldo Marín, Lillyana María; Piedrahita Escobar, Carlos César; Bonet, Isis; Lochmüller, Christian; Tabares Betancur, Marta Silvia; Peña, Alejandro.

En: Espacios, Vol. 39, N.º 28, 01.06.2018.

Resultado de la investigación: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

TY - JOUR

T1 - Análisis comparativo entre

T2 - Espacios

AU - Sánchez Zuleta, Carmen Cecilia

AU - Giraldo Marín, Lillyana María

AU - Piedrahita Escobar, Carlos César

AU - Bonet, Isis

AU - Lochmüller, Christian

AU - Tabares Betancur, Marta Silvia

AU - Peña, Alejandro

PY - 2018/6/1

Y1 - 2018/6/1

N2 - The exponential growth of medical data has generated the need to implement new techniques of information analysis that support decision making. The objective of this article is to identify the aggregated value that data mining models have in decision making in the information given by exploratory analysis. It was used a case study methodology for two data sets, that look to determine the malignity of detected masses, in the breasts of patients, through the interpretation of attributes registered from the mases. The results show a complementary behavior of both techniques.

AB - The exponential growth of medical data has generated the need to implement new techniques of information analysis that support decision making. The objective of this article is to identify the aggregated value that data mining models have in decision making in the information given by exploratory analysis. It was used a case study methodology for two data sets, that look to determine the malignity of detected masses, in the breasts of patients, through the interpretation of attributes registered from the mases. The results show a complementary behavior of both techniques.

KW - Breast cancer

KW - Decision Trees

KW - K-means clustering

KW - Mammographic

UR - http://www.scopus.com/inward/record.url?scp=85049863886&partnerID=8YFLogxK

M3 - Artículo

VL - 39

JO - Espacios

JF - Espacios

SN - 0798-1015

IS - 28

ER -