Genetic Algorithms for the Picker Routing Problem in Multi-block Warehouses

Jose Alejandro Cano, Alexander Alberto Correa-Espinal, Rodrigo Andrés Gómez-Montoya, Pablo Cortés

Resultado de la investigación: Capítulo del libro/informe/acta de congresoContribución a la conferenciaInvestigaciónrevisión exhaustiva

Resumen

This article presents a genetic algorithm (GA) to solve the picker routing problem in multiple-block warehouses in order to minimize the traveled distance. The GA uses survival, crossover, immigration, and mutation operators, and is complemented by a local search heuristic. The genetic algorithm provides average distance savings of 13.9% when compared with s-shape strategy, and distance savings of 23.3% when compared with the GA with the aisle-by-aisle policy. We concluded that the GA performs better as the number of blocks increases, and as the percentage of picking locations to visit decreases.

Idioma originalInglés
Título de la publicación alojadaBusiness Information Systems - 22nd International Conference, BIS 2019, Proceedings
EditoresRafael Corchuelo, Witold Abramowicz
EditorialSpringer Verlag
Páginas313-322
Número de páginas10
ISBN (versión impresa)9783030204846
DOI
EstadoPublicada - 1 ene 2019
Evento22nd International Conference on Business Information Systems, BIS 2019 - Seville, Espana
Duración: 26 jun 201928 jun 2019

Serie de la publicación

NombreLecture Notes in Business Information Processing
Volumen353
ISSN (versión impresa)1865-1348

Conferencia

Conferencia22nd International Conference on Business Information Systems, BIS 2019
PaísEspana
CiudadSeville
Período26/06/1928/06/19

Huella dactilar

Multiblock
Warehouses
Routing Problem
Genetic algorithms
Genetic Algorithm
Average Distance
Immigration
Local Search
Crossover
Percentage
Mathematical operators
Mutation
Genetic algorithm
Warehouse
Routing
Heuristics
Minimise
Decrease
Operator

Citar esto

Cano, J. A., Correa-Espinal, A. A., Gómez-Montoya, R. A., & Cortés, P. (2019). Genetic Algorithms for the Picker Routing Problem in Multi-block Warehouses. En R. Corchuelo, & W. Abramowicz (Eds.), Business Information Systems - 22nd International Conference, BIS 2019, Proceedings (pp. 313-322). (Lecture Notes in Business Information Processing; Vol. 353). Springer Verlag. https://doi.org/10.1007/978-3-030-20485-3_24
Cano, Jose Alejandro ; Correa-Espinal, Alexander Alberto ; Gómez-Montoya, Rodrigo Andrés ; Cortés, Pablo. / Genetic Algorithms for the Picker Routing Problem in Multi-block Warehouses. Business Information Systems - 22nd International Conference, BIS 2019, Proceedings. editor / Rafael Corchuelo ; Witold Abramowicz. Springer Verlag, 2019. pp. 313-322 (Lecture Notes in Business Information Processing).
@inproceedings{8194812daa8141dca1852889d81ffb81,
title = "Genetic Algorithms for the Picker Routing Problem in Multi-block Warehouses",
abstract = "This article presents a genetic algorithm (GA) to solve the picker routing problem in multiple-block warehouses in order to minimize the traveled distance. The GA uses survival, crossover, immigration, and mutation operators, and is complemented by a local search heuristic. The genetic algorithm provides average distance savings of 13.9{\%} when compared with s-shape strategy, and distance savings of 23.3{\%} when compared with the GA with the aisle-by-aisle policy. We concluded that the GA performs better as the number of blocks increases, and as the percentage of picking locations to visit decreases.",
keywords = "Artificial intelligence, Genetic algorithm, Multi-block warehouse, Order picking, Picker routing, Warehouse management",
author = "Cano, {Jose Alejandro} and Correa-Espinal, {Alexander Alberto} and G{\'o}mez-Montoya, {Rodrigo Andr{\'e}s} and Pablo Cort{\'e}s",
year = "2019",
month = "1",
day = "1",
doi = "10.1007/978-3-030-20485-3_24",
language = "Ingl{\'e}s",
isbn = "9783030204846",
series = "Lecture Notes in Business Information Processing",
publisher = "Springer Verlag",
pages = "313--322",
editor = "Rafael Corchuelo and Witold Abramowicz",
booktitle = "Business Information Systems - 22nd International Conference, BIS 2019, Proceedings",

}

Cano, JA, Correa-Espinal, AA, Gómez-Montoya, RA & Cortés, P 2019, Genetic Algorithms for the Picker Routing Problem in Multi-block Warehouses. En R Corchuelo & W Abramowicz (eds.), Business Information Systems - 22nd International Conference, BIS 2019, Proceedings. Lecture Notes in Business Information Processing, vol. 353, Springer Verlag, pp. 313-322, Seville, Espana, 26/06/19. https://doi.org/10.1007/978-3-030-20485-3_24

Genetic Algorithms for the Picker Routing Problem in Multi-block Warehouses. / Cano, Jose Alejandro; Correa-Espinal, Alexander Alberto; Gómez-Montoya, Rodrigo Andrés; Cortés, Pablo.

Business Information Systems - 22nd International Conference, BIS 2019, Proceedings. ed. / Rafael Corchuelo; Witold Abramowicz. Springer Verlag, 2019. p. 313-322 (Lecture Notes in Business Information Processing; Vol. 353).

Resultado de la investigación: Capítulo del libro/informe/acta de congresoContribución a la conferenciaInvestigaciónrevisión exhaustiva

TY - GEN

T1 - Genetic Algorithms for the Picker Routing Problem in Multi-block Warehouses

AU - Cano, Jose Alejandro

AU - Correa-Espinal, Alexander Alberto

AU - Gómez-Montoya, Rodrigo Andrés

AU - Cortés, Pablo

PY - 2019/1/1

Y1 - 2019/1/1

N2 - This article presents a genetic algorithm (GA) to solve the picker routing problem in multiple-block warehouses in order to minimize the traveled distance. The GA uses survival, crossover, immigration, and mutation operators, and is complemented by a local search heuristic. The genetic algorithm provides average distance savings of 13.9% when compared with s-shape strategy, and distance savings of 23.3% when compared with the GA with the aisle-by-aisle policy. We concluded that the GA performs better as the number of blocks increases, and as the percentage of picking locations to visit decreases.

AB - This article presents a genetic algorithm (GA) to solve the picker routing problem in multiple-block warehouses in order to minimize the traveled distance. The GA uses survival, crossover, immigration, and mutation operators, and is complemented by a local search heuristic. The genetic algorithm provides average distance savings of 13.9% when compared with s-shape strategy, and distance savings of 23.3% when compared with the GA with the aisle-by-aisle policy. We concluded that the GA performs better as the number of blocks increases, and as the percentage of picking locations to visit decreases.

KW - Artificial intelligence

KW - Genetic algorithm

KW - Multi-block warehouse

KW - Order picking

KW - Picker routing

KW - Warehouse management

UR - http://www.scopus.com/inward/record.url?scp=85068139598&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-20485-3_24

DO - 10.1007/978-3-030-20485-3_24

M3 - Contribución a la conferencia

SN - 9783030204846

T3 - Lecture Notes in Business Information Processing

SP - 313

EP - 322

BT - Business Information Systems - 22nd International Conference, BIS 2019, Proceedings

A2 - Corchuelo, Rafael

A2 - Abramowicz, Witold

PB - Springer Verlag

ER -

Cano JA, Correa-Espinal AA, Gómez-Montoya RA, Cortés P. Genetic Algorithms for the Picker Routing Problem in Multi-block Warehouses. En Corchuelo R, Abramowicz W, editores, Business Information Systems - 22nd International Conference, BIS 2019, Proceedings. Springer Verlag. 2019. p. 313-322. (Lecture Notes in Business Information Processing). https://doi.org/10.1007/978-3-030-20485-3_24