Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center

Jaime H. Hoyos, J. D. Correa, M. E. Mora-Ramos, C. A. Duque

Resultado de la investigación: Contribución a una revistaArtículo

6 Citas (Scopus)

Resumen

© 2015 Elsevier B.V. All rights reserved. We calculate the nonlinear optical absorption coefficient of a cylindrical zincblende GaN-based quantum dot. For this purpose, we consider Coulomb interactions between electrons and an impurity ionized donor atom. The electron-donor-impurity spectrum and the associated quantum states are calculated using the effective mass approximation with a parabolic potential energy model describing both the radial and axial electron confinement. We also include the effects of the hydrostatic pressure and external electrostatic fields. The energy spectrum is obtained through an expansion of the eigenstates as a linear combination of Gaussian-type functions which reduces the computational effort since all the matrix elements are obtained analytically. Therefore, the numerical problem is reduced to the direct diagonalization of the Hamiltonian. The obtained energies are used in the evaluation of the dielectric susceptibility and the nonlinear optical absorption coefficient within a modified two-level approach in a rotating wave approximation. This quantity is investigated as a function of the quantum dot dimensions, the impurity position, the external electric field intensity and the hydrostatic pressure. The results of this research could be important in the design and fabrication of zincblende GaN-quantum-dot-based electro-optical devices.
Idioma originalInglés estadounidense
Páginas (desde-hasta)73-82
Número de páginas10
PublicaciónPhysica B: Condensed Matter
Volumen484
DOI
EstadoPublicada - 1 mar 2016

    Huella digital

Citar esto