On Generalized Wishart Distributions - II: Sphericity Test

Francisco J. Caro-Lopera, Graciela González-Farías, N. Balakrishnan

Resultado de la investigación: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

Resumen

© 2014, Indian Statistical Institute. In this second part of the paper, we make use of the distribution of the trace of a generalized Wishart matrix based on elliptical models to derive the moments of statistic V used for testing sphericity for a general elliptical model. From the general expressions, we derive specific expressions for the special case of the Kotz family, which includes the Gaussian subfamily. Finally, to illustrate the usefulness of the approach, the exact distribution of the statistic V is derived in terms of the G-function by using Mellin transform and complex integration techniques.
Idioma originalInglés estadounidense
Páginas (desde-hasta)195-218
Número de páginas24
PublicaciónSankhya A
DOI
EstadoPublicada - 1 ago 2014

Huella dactilar

Sphericity Test
Wishart Distribution
Statistic
Sphericity
Wishart Matrix
Mellin Transform
Exact Distribution
G-function
Trace
Moment
Testing
Model
Statistics

Citar esto

Caro-Lopera, Francisco J. ; González-Farías, Graciela ; Balakrishnan, N. / On Generalized Wishart Distributions - II: Sphericity Test. En: Sankhya A. 2014 ; pp. 195-218.
@article{a242a9e0ded6482885c9ccf3549a1e73,
title = "On Generalized Wishart Distributions - II: Sphericity Test",
abstract = "{\circledC} 2014, Indian Statistical Institute. In this second part of the paper, we make use of the distribution of the trace of a generalized Wishart matrix based on elliptical models to derive the moments of statistic V used for testing sphericity for a general elliptical model. From the general expressions, we derive specific expressions for the special case of the Kotz family, which includes the Gaussian subfamily. Finally, to illustrate the usefulness of the approach, the exact distribution of the statistic V is derived in terms of the G-function by using Mellin transform and complex integration techniques.",
author = "Caro-Lopera, {Francisco J.} and Graciela Gonz{\'a}lez-Far{\'i}as and N. Balakrishnan",
year = "2014",
month = "8",
day = "1",
doi = "10.1007/s13171-013-0049-5",
language = "American English",
pages = "195--218",
journal = "Sankhya A",
issn = "0976-836X",
publisher = "Springer India",

}

On Generalized Wishart Distributions - II: Sphericity Test. / Caro-Lopera, Francisco J.; González-Farías, Graciela; Balakrishnan, N.

En: Sankhya A, 01.08.2014, p. 195-218.

Resultado de la investigación: Contribución a una revistaArtículoInvestigaciónrevisión exhaustiva

TY - JOUR

T1 - On Generalized Wishart Distributions - II: Sphericity Test

AU - Caro-Lopera, Francisco J.

AU - González-Farías, Graciela

AU - Balakrishnan, N.

PY - 2014/8/1

Y1 - 2014/8/1

N2 - © 2014, Indian Statistical Institute. In this second part of the paper, we make use of the distribution of the trace of a generalized Wishart matrix based on elliptical models to derive the moments of statistic V used for testing sphericity for a general elliptical model. From the general expressions, we derive specific expressions for the special case of the Kotz family, which includes the Gaussian subfamily. Finally, to illustrate the usefulness of the approach, the exact distribution of the statistic V is derived in terms of the G-function by using Mellin transform and complex integration techniques.

AB - © 2014, Indian Statistical Institute. In this second part of the paper, we make use of the distribution of the trace of a generalized Wishart matrix based on elliptical models to derive the moments of statistic V used for testing sphericity for a general elliptical model. From the general expressions, we derive specific expressions for the special case of the Kotz family, which includes the Gaussian subfamily. Finally, to illustrate the usefulness of the approach, the exact distribution of the statistic V is derived in terms of the G-function by using Mellin transform and complex integration techniques.

U2 - 10.1007/s13171-013-0049-5

DO - 10.1007/s13171-013-0049-5

M3 - Article

SP - 195

EP - 218

JO - Sankhya A

JF - Sankhya A

SN - 0976-836X

ER -