### Resumen

The electronic and interband optical properties of vertically coupled stacked graphene quantum dots are investigated using the tight-binding method. Both zigzag and armchair edge configurations are taken into account. In particular, the effect of the geometrical shape (triangular or circle-like) and, most prominently, of the angle of twisting between layers is mainly addressed. The optical response is analyzed from the calculated imaginary part of the dielectric function. It is found that the interband absorption threshold is highly dependent on the dot size and geometry: For armchair triangular bilayer graphene dots the optical gap exhibits a moderate increase for smaller angles of twisting, and the structure behaves as an intermediate to a wide gap semiconductor; whereas zigzag triangular bilayer graphene dots are small gap systems in which the twisting causes the appearance of zero-gap states associated with the variation of HOMO and LUMO states resulting from the breaking of zero-energy degeneracy. In the latter case, it is shown that the low-energy transitions between those states are responsible for the main optical response of the structures which indicates possible applications in the THz optoelectronics. Circular dots are chosen in commensurable configurations and also show stronger low-energy absorption thresholds. A particular feature appearing in this case is the presence of Bravais-Moiré patterns in the two-dimensional probability density distributions for large enough dot radii.

Idioma original | Inglés |
---|---|

Páginas (desde-hasta) | 36-48 |

Número de páginas | 13 |

Publicación | Physica E: Low-Dimensional Systems and Nanostructures |

Volumen | 112 |

DOI | |

Estado | Publicada - 1 ago 2019 |

### Huella digital

### Citar esto

*Physica E: Low-Dimensional Systems and Nanostructures*,

*112*, 36-48. https://doi.org/10.1016/j.physe.2019.03.028