Resumen
This paper develops a general framework establishing the minimum guidelines required for the study of corporate bankruptcy, framed in five elements such as the definition, sample, cost of error, statistical techniques and variables of prediction models. We analyze 143 articles published in ISI Web of Science and SCOPUS for the period 2012-2017, finding that the most used techniques are neural networks, support vector models and decision trees, while discriminant and logistic models are used as a benchmark.
Título traducido de la contribución | A systematic review of the literature on corporate bankruptcy for the period 2012-2017 |
---|---|
Idioma original | Español |
Publicación | Espacios |
Volumen | 40 |
N.º | 4 |
Estado | Publicada - 1 ene. 2019 |
Palabras clave
- Business bankruptcy
- Financial indicators
- Indicadores financieros
- Modelos de predicción
- Prediction models
- Quiebra empresarial